当前所在位置:

首页  >  

新闻列表  >  

化学选修三:这么重要的知识点,你还没掌握吗?

化学选修三:这么重要的知识点,你还没掌握吗?


化学选修三的重点知识可太多了,说不定下一次考试就考到了,同学们千万要认真对待。为了方便同学们复习,小优特意整理了化学选修三的部分重点知识,赶紧来复习一下吧!

一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.

1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.

电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.

原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.

2.(构造原理)

了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.

(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.

(2).原子核外电子排布原理.

①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.

②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.

③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.

洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr Ar]3d54s1、29Cu Ar]3d104s1.

(3).掌握能级交错图和1-36号元素的核外电子排布式.

①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。

②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。

3.元素电离能和元素电负性

第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。

(1).原子核外电子排布的周期性.

随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.

(2).元素第一电离能的周期性变化.

随着原子序数的递增,元素的第一电离能呈周期性变化:

★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;

★同主族从上到下,第一电离能有逐渐减小的趋势.

以上只是“原子结构与性质”章节的重点知识,如果同学们还想复习其它章节的知识,其实可以报一个辅导班,这样能够帮助同学们更系统地复习化学知识。掌门优课就不错,如果同学们正式在掌门优课学习,可以获得优秀教师的辅导,如果后续不喜欢老师的授课方式还能随时更换,非常方便。


数学网上辅导分享的这些数学知识点你掌握了多少?


机会只不过是相对于充分准备而又善于创造机会的人而言的。没有机会,就要创造机会;有了机会,就要巧妙地抓住机会,而高考就是同学们走上成功之路的第一个机会。小优特意为同学们整理了高三数学重点知识集合,希望对同学们有所帮助!  

【一】  

1.数列的定义  

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.  

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.  

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….  (3)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.  

(4)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.  

2.数列的分类  

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.  

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.  

3.数列的通项公式  

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的。  

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,  

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.  

再强调对于数列通项公式的理解注意以下几点:  

(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.  

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.  

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.  

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.  

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:  

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.  

4.数列的图象  

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:  

序号:1234567  

项:45678910  

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.  

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.  

数列是一种特殊的函数,数列是可以用图象直观地表示的.  

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.  

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.  

5.递推数列  

一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.  

数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。  

【同步练习题】  

1.已知数列{an}中,an=n2+n,则a3等于()  

A.3

B.9  

C.12

D.20  

答案:C  

2.下列数列中,既是递增数列又是无穷数列的是()  

A.1,12,13,14,…  

B.-1,-2,-3,-4,…  

C.-1,-12,-14,-18,…  

D.1,2,3,…,n  

解析:选C.对于A,an=1n,n∈N*,它是无穷递减数列;对于B,an=-n,n∈N*,它也是无穷递减数列;D是有穷数列;对于C,an=-(12)n-1,它是无穷递增数列.  

3.下列说法不正确的是()  

A.根据通项公式可以求出数列的任何一项  

B.任何数列都有通项公式  

C.一个数列可能有几个不同形式的通项公式  

D.有些数列可能不存在项  

解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….  

4.数列23,45,67,89,…的第10项是()  

A.1617

B.1819  

C.2021

D.2223  

解析:选C.由题意知数列的通项公式是an=2n2n+1,  

∴a10=2×102×10+1=2021.故选C.  

5.已知非零数列{an}的递推公式为an=nn-1•an-1(n>1),则a4=()  

A.3a1

B.2a1  

C.4a1

D.1  

解析:选C.依次对递推公式中的n赋值,当n=2时,a2=2a1;当n=3时,a3=32a2=3a1;当n=4时,a4=43a3=4a1.  

如果想要系统性地学习知识,但还未报名数学网上辅导的同学,小优推荐同学们报名掌门优课。因为掌门优课会根据同学们入学测试的学习情况进行科学分班,进入到适合自己班型中学习才能更高效。当然,在后续的学习中,如果不适应当前的班型或者不喜欢老师的授课风格,随时可以更换。掌门优课还支持免费试听,同学们感兴趣可以先去试听一下。

俗话说,一分耕耘,一分收获。想要取得优异成绩,就要努力付出。希望同学们对于学习这件事能够持之以恒,最终达到自己的目标。


客服热线:021-10108868
Copyright 上海掌小门教育科技有限公司沪ICP备16015460号